Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Monte Carlo Study of a Planar Electric Double Layer Formed by Ions with Off-Center Charge.

Grand canonical Monte Carlo simulation results are reported for an electric double layer (EDL) modeled by a planar charged hard wall, hard sphere cations with an off-center charge, and spherical anions with a charge at the center of the sphere. The ion charge numbers are Z+ = +1 and Z- = -1, and the diameter, d, of a hard sphere is the same for anions and cations. The ions are immersed in a solvent mimicked by a continuum dielectric medium at standard temperature. The results are obtained for three values of charge displacement, s+0 = d/16, d/4, 7d/16 from the center of the sphere and the following electrolyte concentrations: 0.5, 1.0, 2.0, and 3.0 M. The profiles of electrode-ion singlet distributions, cation reduced charge density, angular function, and mean electrostatic potential are reported for an electrode surface charge density σ = -0.30 C m-2 , whereas the electrode potential and the differential capacitance of EDL are shown as functions of the electrode charge density varying from -1.00 to +1.00 C m-2 . At negative electrode charges and with increasing values of the charge separation, the differential capacitance curve rises. As the electrolyte concentration increases, the shape of the differential capacitance curve changes from that of a minimum surrounded by two maxima into that of a distorted single maximum.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app