Add like
Add dislike
Add to saved papers

Radiation reduction during percutaneous coronary intervention: A new protocol with a low frame rate and selective fluoroscopic image storage.

The percutaneous coronary intervention (PCI) procedure is associated with potentially high levels of radiation exposure and therefore increased risk of adverse radiation-induced outcomes, ranging from cataract to malignancy. Frame rate reduction and selective fluoroscopy storage may help reduce radiation exposure. In this study, we evaluated the efficacy of a radiation reduction protocol that uses a lower frame rate and selective storage of fluoroscopic images in terms of its effect on reducing the radiation dose during PCI.The new protocol incorporated a lower frame rate as compared with the conventional protocol, and used selective storage of fluoroscopic images. We reviewed the medical records of patients who underwent PCI under the conventional protocol from January 2013 to December 2013, and compared them with those who underwent PCI with the new protocol from January 2015 to December 2015. The primary endpoint was radiation dose reduction expressed as cumulative air kerma and dose-area product (DAP). The image quality was assessed by 3 independent well-trained cardiologists.One hundred fifty-five patients were enrolled in the conventional protocol group, and 152 were enrolled in the radiation reduction protocol group (total, n = 307). There was no statistical significance in terms of the baseline characteristics, including body mass index. Overall, the radiation reduction protocol group showed a significant reduction in both cumulative air kerma (1634.39 ± 717.95 vs 2074.75 ± 1003.72 mGy, P < .001) and DAP (12344.86 ± 5371.75 vs 15312.19 ± 7136.58 μGy m, P < .001). Image quality was acceptable in both groups.The radiation reduction protocol, which uses a lower frame rate and selective storage of fluoroscopic images, may be an alternative approach to reducing PCI radiation dose.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app