Add like
Add dislike
Add to saved papers

Effect of Noradrenergic Neurotoxin DSP-4 and Maprotiline on Heart Rate Spectral Components in Stressed and Resting Rats.

The effects of intraperitoneal DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine, a noradrenergic neurotoxin) and maprotiline (an inhibitor of norepinephrine reuptake in synapses) on spectral components of heart rhythm variability were examined in outbred male and female rats treated with these agents in daily doses of 10 mg/kg for 3 days. At rest, DSP-4 elevated LF and VLF spectral components in male and female rats. Maprotiline elevated LF and VLF components in males at rest, increased HR and reduced all spectral components in resting females. Stress against the background of DSP-4 treatment sharply increased heart rate and reduced the powers of all spectral components (especially LF and VLF components). In maprotiline-treated rats, stress increased the powers of LF and VLF components. Thus, the central noradrenergic system participates in the formation of LF and VLF spectral components of heart rate variability at rest and especially during stressful stimulation, which can determine the phasic character of changes in the heart rate variability observed in stressed organism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app