Add like
Add dislike
Add to saved papers

Sonocatalytic removal of ibuprofen and sulfamethoxazole in the presence of different fly ash sources.

We examined the feasibility of using two types of fly ash (an industrial waste from thermal power plants) as a low-cost catalyst to enhance the ultrasonic (US) degradation of ibuprofen (IBP) and sulfamethoxazole (SMX). Two fly ashes, Belews Creek fly ash (BFA), from a power station in North Carolina, and Wateree Station fly ash (WFA), from a power station in South Carolina, were used. The results showed that >99% removal of IBP and SMX was achieved within 30 and 60min of sonication, respectively, at 580kHz and pH 3.5. Furthermore, the removal of IBP and SMX achieved, in terms of frequency, was in the order 580kHz>1000kHz>28kHz, and in terms of pH, was in the order of pH 3.5>pH 7>pH 9.5. WFA showed significant enhancement in the removal of IBP and SMX, which reached >99% removal within 20 and 50min, respectively, at 580kHz and pH 3.5. This was presumably because WFA contains more silicon dioxide than BFA, which can enhance the formation of OH radicals during sonication. Additionally, WFA has finer particles than BFA, which can increase the adsorption capacity in removing IBP and SMX. The sonocatalytic degradation of IBP and SMX fitted pseudo first-order rate kinetics and the synergistic indices of all the reactions were determined to compare the efficiency of the fly ashes. Overall, the findings have showed that WFA combined with US has potential for treating organic pollutants, such as IBP and SMX, in water and wastewater.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app