Add like
Add dislike
Add to saved papers

Altered signaling associated with chronic arsenic exposure in human skin keratinocytes.

Modulation of signaling pathways upon chronic arsenic exposure remains poorly studied. Here, we carried out SILAC-based quantitative phosphoproteomics analysis to dissect the signaling induced upon chronic arsenic exposure in human skin keratinocyte cell line, HaCaT. We identified 4171 unique phosphosites derived from 2000 proteins. We observed differential phosphorylation of 406 phosphosites (twofold) corresponding to 305 proteins. Several pathways involved in cytoskeleton maintenance and organization were found to be significantly enriched (p<0.05). Our data revealed altered phosphorylation of proteins associated with adherens junction remodeling and actin polymerization. Kinases such as protein kinase C iota type (PRKCI), mitogen-activated protein kinase kinase kinase 1 (MAP3K1), tyrosine-protein kinase BAZ1B (BAZ1B) and STE20 like kinase (SLK) were found to be hyperphosphorylated. Our study provides novel insights into signaling perturbations associated with chronic arsenic exposure in human skin keratinocytes. All MS/MS data have been deposited to the ProteomeXchange with identifier PXD004868.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app