Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Arabidopsis calmodulin-like protein CML36 is a calcium (Ca 2+ ) sensor that interacts with the plasma membrane Ca 2+ -ATPase isoform ACA8 and stimulates its activity.

Calmodulin-like (CML) proteins are major EF-hand-containing, calcium (Ca2+ )-binding proteins with crucial roles in plant development and in coordinating plant stress tolerance. Given their abundance in plants, the properties of Ca2+ sensors and identification of novel target proteins of CMLs deserve special attention. To this end, we recombinantly produced and biochemically characterized CML36 from Arabidopsis thaliana We analyzed Ca2+ and Mg2+ binding to the individual EF-hands, observed metal-induced conformational changes, and identified a physiologically relevant target. CML36 possesses two high-affinity Ca2+ /Mg2+ mixed binding sites and two low-affinity Ca2+ -specific sites. Binding of Ca2+ induced an increase in the α-helical content and a conformational change that lead to the exposure of hydrophobic regions responsible for target protein recognition. Cation binding, either Ca2+ or Mg2+ , stabilized the secondary and tertiary structures of CML36, guiding a large structural transition from a molten globule apo-state to a compact holoconformation. Importantly, through in vitro binding and activity assays, we showed that CML36 interacts directly with the regulative N terminus of the Arabidopsis plasma membrane Ca2+ -ATPase isoform 8 (ACA8) and that this interaction stimulates ACA8 activity. Gene expression analysis revealed that CML36 and ACA8 are co-expressed mainly in inflorescences. Collectively, our results support a role for CML36 as a Ca2+ sensor that binds to and modulates ACA8, uncovering a possible involvement of the CML protein family in the modulation of plant-autoinhibited Ca2+ pumps.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app