Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Repair of Tympanic Membrane Perforations with Customized Bioprinted Ear Grafts Using Chinchilla Models.

The goal of this work is to develop an innovative method that combines bioprinting and endoscopic imaging to repair tympanic membrane perforations (TMPs). TMPs are a serious health issue because they can lead to both conductive hearing loss and repeated otitis media. TMPs occur in 3-5% of cases after ear tube placement, as well as in cases of acute otitis media (the second most common infection in pediatrics), chronic otitis media with or without cholesteatoma, or as a result of barotrauma to the ear. About 55,000 tympanoplasties, the surgery performed to reconstruct TMPs, are performed every year, and the commonly used cartilage grafting technique has a success rate between 43% and 100%. This wide variability in successful tympanoplasty indicates that the current approach relies heavily on the skill of the surgeon to carve the shield graft into the shape of the TMP, which can be extremely difficult because of the perforation's irregular shape. To this end, we hypothesized that patient specific acellular grafts can be bioprinted to repair TMPs. In vitro data demonstrated that our approach resulted in excellent wound healing responses (e.g., cell invasion and proliferations) using our bioprinted gelatin methacrylate constructs. Based on these results, we then bioprinted customized acellular grafts to treat TMP based on endoscopic imaging of the perforation and demonstrated improved TMP healing in a chinchilla study. These ear graft techniques could transform clinical practice by eliminating the need for hand-carved grafts. To our knowledge, this is the first proof of concept of using bioprinting and endoscopic imaging to fabricate customized grafts to treat tissue perforations. This technology could be transferred to other medical pathologies and be used to rapidly scan internal organs such as intestines for microperforations, brain covering (Dura mater) for determination of sites of potential cerebrospinal fluid leaks, and vascular systems to determine arterial wall damage before aneurysm rupture in strokes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app