Add like
Add dislike
Add to saved papers

Design and discovery of novel monastrol-1,3,5-triazines as potent anti-breast cancer agent via attenuating Epidermal Growth Factor Receptor tyrosine kinase.

Scientific Reports 2017 July 20
A novel series of hybrid analogues of monastrol-1,3,5-triazine were designed and developed via one-pot synthesis using Bi(NO3 )3 as a catalyst. Entire compounds were evaluated for their anticancer activity against HeLa (cervical cancer), MCF-7 (breast cancer), HL-60 (Human promyelocytic leukemia), HepG2 (Hepatocellular carcinoma) and MCF 12A (normal epithelial breast cell line) using MTT assay, where they showed highest inhibitory activity against MCF-7. The molecules were also found to be non-toxic to MCF 12A cells. These molecules showed considerable inhibitory percentage against Epidermal Growth Factor Receptor tyrosine kinase (EGFR-TK), in in-vitro assay. Molecular docking study was carried out on the analogs and reference compound (Erlotinib) into the ATP binding site of EGFR-TK domain (PDB ID:1M17) to elucidate vital structural residues necessary for bioactivity. The effect of most active compound 7l was also estimated in-vivo in DMBA induced mammary tumor in female Sprague-Dawley rats. The effect of anti-breast cancer effect of 7l was quantified on the basis of tumour incidence, body weight and tumor volume in DMBA-induced rats. Its effect on biochemical parameters, such as antioxidant status (SOD, CAT, GPX and GSH) and lipid peroxidation was also studied. The compound 7l showed inhibition of EGFR downstream signalling in the western blot analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app