Add like
Add dislike
Add to saved papers

Hsp90 inhibitor induces KG-1a cell differentiation and apoptosis via Akt/NF-κB signaling.

Oncology Reports 2017 September
Heat-shock protein 90 (Hsp 90) acts as a molecular chaperone that maintains protein stability and regulates cell proliferation, survival, differentiation and apoptosis. The present study investigated the effect of Hsp90 inhibition on human acute myeloid leukemia (AML) cells using the novel small-molecule inhibitor SNX-2112. We found that SNX-2112 more potently inhibited KG-1a cell growth than the classical Hsp90 inhibitor 17-(2-dimethylaminoethyl)amino‑17-demethoxygeldanamycin as determined by CCK-8 assay. Flow cytometry was used to examine the cell cycle, differentiation, and apoptosis, and western blotting and qRT-PCR were used to analyze the underlying mechanism. The results revealed that low concentrations of SNX-2112 arrested the cells in the G2/M phase and induced their differentiation and apoptosis, possibly by suppressing Akt and inhibitor of κB kinase, a component of the nuclear factor (NF)-κB signaling pathway. We also found that SNX-2112 increased the expression of the differentiation transcription factors PU.1 and CCAAT‑enhancer-binding protein-α. Thus, SNX-2112 induced KG-1a cell differentiation, cell cycle arrest and apoptosis via modulation of Akt and NF-κB signaling, suggesting that it is a promising therapeutic agent for the treatment of AML.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app