Add like
Add dislike
Add to saved papers

Synthesis and characterization of cobalt-supported catalysts on modified magnetic nanoparticle: Green and highly efficient heterogeneous nanocatalyst for selective oxidation of ethylbenzene, cyclohexene and oximes with molecular oxygen.

In this study, a new supported cobalt nanocatalyst has been described. The Fe3 O4 magnetic nanoparticles (Fe3 O4 MNPs) modified by SiO2 /aminopropyl trimethoxy silane/cyanuric chloride (Fe3 O4 @SiO2 -APTMS/CC) utilized for anchoring metformin-cobalt complex (Fe3 O4 Ms@SiO2 -APTMS/CC/Met@Co(II)). The structure of novel complex well defined by elemental analysis, ICP, AAS, BET, FT-IR, EDX, SEM, TEM, DLS, XRD, TG-DTG, VSM and XPS. The catalytic efficiency of the synthesized cobalt nanocatalyst was studied in the oxidation of ethylbenzene (EB), cyclohexene (CYHE) and various oximes using molecular oxygen as ecofriendly oxidant and high catalytic activity and selectivity toward oxidation is observed. Selective aerobic oxidation of EB and CYHE and various oximes catalyzed by the cobalt nanocatalyst without any reducing agent by using N-hydroxyphthalimide (NHPI), gave acetophenone (AcPO), 2-cyclohexene-1-one and corresponding carbonyl compounds respectively, as major products. To achieve high level of efficiency of heterogeneous nanocatalyst, various parameters such as the ratio and amount of nanocatalyst/NHPI, reaction time, temperature and solvents were evaluated. The easily preparation from inexpensive and commercially available reagent, thermal stability, suitable performance in reusability, high efficiency and selectivity in oxidation reactions, short reaction time, easy recovery and separation from reaction mixture, are advantages of this novel catalyst.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app