Add like
Add dislike
Add to saved papers

Contribution of electron-atom collisions to the plasma conductivity of noble gases.

We present an approach which allows the consistent treatment of bound states in the context of dc conductivity in dense partially ionized noble gas plasmas. Besides electron-ion and electron-electron collisions, further collision mechanisms owing to neutral constituents are taken into account. Especially at low temperatures of 10^{4}to10^{5} K, electron-atom collisions give a substantial contribution to the relevant correlation functions. We suggest an optical potential for the description of the electron-atom scattering which is applicable for all noble gases. The electron-atom momentum-transfer cross section is in agreement with experimental scattering data. In addition, the influence of the medium is analyzed, the optical potential is advanced including screening effects. The position of the Ramsauer minimum is influenced by the plasma. Alternative approaches for the electron-atom potential are discussed. Good agreement of calculated conductivity with experimental data for noble gas plasmas is obtained.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app