Add like
Add dislike
Add to saved papers

Integrated amplified aptasensor with in-situ precise preparation of copper nanoclusters for ultrasensitive electrochemical detection of microRNA 21.

MicroRNA 21 (MIR21) has garnered much attention in recent years as an important disease biomarker. The detection of it in human system shows great significance for the healthy evaluation and major diseases early detection. Herein, a novel approach tactfully manipulates the in-situ precise preparation of copper nanoclusters on overlapping Y-shaped ds-DNA for MIR21 analysis were developed in the proposed integrated aptasensor. In the presence of target MIR21, overlapping Y-shaped ds-DNA was constructed on electrode. Copper nanoclusters were in-situ prepared on this effective template for target detection. Taking advantage of exonuclease T7 triggered targets recycling, hybridization chain reaction (HCR) and copper nanoclusters triple amplification strategy, linear detection of MIR21 was achieved from 10pM to 0.1fM with a detection limit down to 10aM (S/N > 3). This approach provides a good model for integrating both synthesis and detection into one electrochemistry component. It showed promising potential for applications in aptamer related target detection in human serum analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app