Add like
Add dislike
Add to saved papers

Biosynthesis of L-Erythrose by Assembly of Two Key Enzymes in Gluconobacter oxydans.

L-erythrose, a rare aldotetrose, possesses various pharmacological activities. However, efficient L-erythrose production is challenging. Currently, L-erythrose is produced by a two-step fermentation process from erythritol. Here, we describe a novel strategy for the production of L-erythrose in Gluconobacter oxydans (G. oxydans) by localizing the assembly of L-ribose isomerase (L-RI) to membrane-bound sorbitol dehydrogenase (SDH) via the protein-peptide interactions of the PDZ domain and PDZ ligand. To demonstrate this self-assembly, green fluorescent protein (GFP) replaced L-RI and its movement to membrane-bound SDH was observed by fluorescence microscopy. The final L-erythrose production was improved to 23.5 g/L with the stepwise metabolic engineering of G. oxydans, which was 1.4-fold higher than that obtained using coexpression of SDH and L-RI in G. oxydans. This self-assembly strategy shows remarkable potential for further improvement of L-erythrose production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app