Add like
Add dislike
Add to saved papers

Mutagenesis of threonine to serine in the active site of Mycobacterium tuberculosis fructose-1,6-bisphosphatase (Class II) retains partial enzyme activity.

Biotechnology Reports 2017 September
The glpX gene encodes for the Class II fructose-1,6-bisphosphatase enzyme in Mycobacterium tuberculosis (Mt), an essential enzyme for pathogenesis. We have performed site directed mutagenesis to introduce two mutations at residue Thr84, T84A and T84S, to explore the binding affinity of the substrate and the catalytic mechanism. The T84A mutant fully abolishes enzyme activity while retaining substrate binding affinity. In contrast, the T84S mutant retains some activity having a 10 times reduction in Vmax and exhibited similar sensitivity to lithium when compared to the wildtype. Homology modeling using the Escherichia coli enzyme structure suggests that the replacement of the critical nucleophile OH(-) in the Thr84 residue of the wildtype of MtFBPase by Ser84 results in subtle alterations of the position and orientation that reduce the catalytic efficiency. This mutant could be used to trap reaction intermediates, through crystallographic methods, facilitating the design of potent inhibitors via structure-based drug design.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app