Add like
Add dislike
Add to saved papers

NGL-3-induced presynaptic differentiation of hippocampal neurons in an afadin-dependent, nectin-1-independent manner.

A hippocampal mossy fiber synapse, which is implicated in learning and memory, has a complex structure. We have previously shown using afadin-deficient mice that afadin plays multiple roles in the structural and functional differentiations of this synapse. We investigated here using a co-culture system with cultured hippocampal neurons and non-neuronal COS-7 cells expressing synaptogenic cell adhesion molecules (CAMs) whether afadin is involved in the presynaptic differentiation of hippocampal synapses. Postsynaptic CAMs NGL-3 (alias, a Lrrc4b gene product) and neuroligin induced presynaptic differentiation by trans-interacting with their respective presynaptic binding CAMs LAR (alias, a Ptprf gene product) and neurexin. This activity of NGL-3, but not neuroligin, was dependent on afadin, but not the afadin-binding presynaptic CAM nectin-1. The afadin-binding postsynaptic CAM nectin-3 did not induce presynaptic differentiation. Immunofluorescence and immunoelectron microscopy analyses showed that afadin was localized mainly at puncta adherentia junctions, but partly at synaptic junctions, of the mossy fiber synapse. β-Catenin and γ-catenin known to bind to LAR were co-immunoprecipitated with afadin from the lysate of mouse brain. These results suggest that afadin is involved in the NGL-3-LAR system-induced presynaptic differentiation of hippocampal neurons cooperatively with β-catenin and γ-catenin in a nectin-1-independent manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app