Add like
Add dislike
Add to saved papers

Mechanistic insights of the enhancement effect of sorbitan monooleate on olanzapine transdermal patch both in release and percutaneous absorption processes.

In this paper, based on the optimized formulation of olanzapine (OLN) transdermal patch, the role of sorbitan monooleate (SP) in OLN release and percutaneous absorption processes was probed in vitro and in vivo. Rheological test, DSC, FT-IR and molecular modeling were conducted to elucidate the effect of SP on the release process of OLN from transdermal patch. Additionally, the action of SP on the percutaneous absorption process was probed using tape stripping transdermal experiment, confocal laser scanning microscopy (CLSM), ATR-FTIR and molecular docking. The results showed that the hydrogen bonding interaction between OLN and pressure sensitive adhesive (PSA) was weakened by SP, which resulted in a decrease in the cohesive interaction between polymer chains and an increase in the formation of free volume of PSA, thus, the release of OLN from patch was promoted. Meanwhile, the OH groups of SP interacted with the polar head groups of the ceramides, which increased the fluidity of the skin lipids, thereby improved the ability of OLN percutaneous absorption. In summary, this study demonstrated that not only the release but also the percutaneous absorption processes were promoted by SP. This study provided comprehensive molecular level understanding on the effect of penetration enhancer on transdermal patch and strategies for rationally selection of chemical enhancer for transdermal drug delivery systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app