Add like
Add dislike
Add to saved papers

Pesticide tailwater deeply treated by tubular porous electrode reactor (TPER): Purpose for discharging and cost saving.

Chemosphere 2017 October
Pesticide tailwater often contains residual and toxic contaminants of triazole fungicides (TFs) due to their poor biodegradability which will do great harm to local aquatic systems. For this case, a novel electrochemical reactor (TPER) equipped a tubular porous RuO2-Sb2O5-SnO2 electrode was assembled and then employed to deeply treat pesticide tailwater. Characterizations of the electrode studied by SEM, EDS and XRD analysis indicated that it owns a porous structure and a compact and crack-free surface. Influence of the porous structure on electrochemical property was examined by cyclic voltammetry and normal pulse voltammetry. The results indicated that porous structure can not only enlarge electrochemical active area but also increase mass transfer efficiency by 5.7-fold in flow-through mode compared with batch mode. Furthermore, the optimal operating conditions of TPER were flow rate of 250 mL min(-1) and current density of 4 mA cm(-2). After 1.5 h treatment under these conditions, Tz, TC and PPC were removed by 98.9%, 99.0% and 98.4% respectively, while 81.9% of COD was also removed. Additionally, the microbial content was dropped to 0 CFU mL(-1) and fecal coliform was lower than 2 MPN (100 mL)(-1). All results demonstrated that the treated tailwater has met the Class 1 of National Discharge Standard of China. Especially, operating cost of TPER was only $ 0.33 per ton. The excellent performance together with the low cost indicated that TPER is a promising option for depth treatment of industrial tailwater.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app