Add like
Add dislike
Add to saved papers

Studies of protein-protein interactions in Fanconi anemia pathway to unravel the DNA interstrand crosslink repair mechanism.

Fanconi anemia (FA), a cancer predisposition syndrome exhibits hallmark feature of radial chromosome formation, and hypersensitivity to DNA crosslinking agents. A set of FA pathway proteins mainly FANCI, FANCD2 and BRCA2 are expressed to repair the covalent crosslink between the dsDNA. However, FA, BRCA pathways play an important role in DNA ICL repair as well as in homologous recombination repair, but the presumptive role of FA-BRCA proteins has not clearly explored particularly in context to function associated protein-protein interactions (PPIs). Here, in-vivo, in-vitro and in-silico studies have been performed for functionally relevant domains of FANCI, FANCD2 and BRCA2. To our conclusion, FANCI ARM repeat interacts with FANCD2 CUE domain and BRCA2 C-terminal region. Interestingly, FANCD2 CUE domain also interacts strongly with BRCA2 C-terminal region. Interactions between BRCA2 CTR and functionally relevant mutations Ser222Ala (cell cycle checkpoint mutant) and Leu231Arg (DNA ICL repair mutant) present in FANCD2 CUE domain have been analysed. To our finding, these mutations abrogate the binding between FANCD2 CUE domain and BRCA2 CTR. Furthermore, (1) different domain of FANCI, FANCD2 and BRCA2 are playing important role in PPIs, (2) mutations cause the impairment in the PPIs which in turn may disrupt the DNA ICL repair mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app