Add like
Add dislike
Add to saved papers

A further result on consensus problems of second-order multi-agent systems with directed graphs, a moving mode and multiple delays.

ISA Transactions 2017 November
This paper considers a consensus problem of a class of second-order multi-agent systems with a moving mode and multiple delays on directed graphs. Using local information, a distributed algorithm is adopted to make all agents reach a consensus while moving together with a constant velocity in the presence of delays. To study the effects of the coexistence of the moving mode and delays on the consensus convergence, a frequency domain approach is employed through analyzing the relationship between the components of the eigenvector associated with the eigenvalue on imaginary axis. Then based on the continuity of the system function, an upper bound for the delays is given to ensure the consensus convergence of the system. A numerical example is included to illustrate the obtained theoretical results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app