Add like
Add dislike
Add to saved papers

Second order directed positioning of nanoparticles induced by the main terminal meniscus shape in irregular template cavities.

Nanoscale 2017 July 21
Directed self-assembly of nanoparticles using topographical templates has demonstrated great capabilities of ordering particles at their maximum packing fraction resulting from template confinement effects and free energy minimization. However, to self-assemble nanostructures at a lower packing fraction with a precise control over particle's positioning is challenging due to the high entropy of such a system. Here, by fabricating templates of irregular cavities together with appropriate choice of solvent, we demonstrate the positioning of 8 nm Au nanoparticles within individual cavities at a low filling factor. In addition to the first-order of ordering dictated by the template topography, there is a second-order of ordering induced by the interplay between the evaporation of the residual solvent trapped within the cavities and their intrinsic geometries. The experimental results show that the cavities shaped as equilateral triangles exhibit a random positioning of the particles at the corners; in comparison, right-angled scalene (or irregular) triangles show a more controllable positioning of the particles within the corners of the smallest angle. Finally, this technique has been successfully used to fabricate arrays of dimers with a controllable center-to-center distances at sub-5 nm length scales.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app