Add like
Add dislike
Add to saved papers

Protective effect and mechanism of ginsenoside Rg1 on carbon tetrachloride‑induced acute liver injury.

Liver injury is a common pathological state in various types of liver disease; severe or persistent liver damage is the basis of hepatic failure. Ginsenoside Rg1 (Rg1), one of the primary active ingredients of ginseng, has been reported to reduce concanalin A‑induced hepatitis and protect against lipopolysaccharide‑ and galactosamine‑induced liver injury. However, the underlying protective mechanism of Rg1 in acute liver injury remains unclear. In the present study, a carbon tetrachloride (CCl4)‑induced acute liver injury model was established, and the protective effect of Rg1 on CCl4‑induced acute liver injury was demonstrated in cell culture and animal experimental systems. Further investigation of the mechanisms demonstrated that pretreatment with Rg1 reduced elevated levels of alanine aminotransferase and aspartate aminotransferase, enhanced the antioxidant activity of superoxide dismutase (SOD) and decreased malondialdehyde (MDA) content. Experiments in vitro demonstrated that Rg1 decreased p65 expression and inhibited nuclear factor (NF)‑κB activity. In addition to the effect of Rg1, an NF‑κB inhibitor promoted cell survival, enhanced SOD activity and reduced MDA level. It was observed through in vivo experiments that pretreatment with Rg1 inhibited NF‑κB expression and activity in Kupffer cells and reduced the serum levels of tumor necrosis factor‑α and interleukin‑6. In conclusion, the results of the present study indicated that pretreatment with Rg1 may rescue CCl4‑induced acute liver injury in vivo and in vitro through inhibition of NF‑κB activity, to restore the anti‑oxidative defense system and down‑regulate pro‑inflammatory signaling pathways. The present observations provide a theoretical foundation for the clinical application of Rg1 therapy in acute liver injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app