Add like
Add dislike
Add to saved papers

The memristive effect as a novelty in drug monitoring.

Nanoscale 2017 July 14
Nanoscale devices exhibiting memristive properties show great potential in a plethora of applications. In this work, memristive nanowires are presented for the first time as ideal candidates for absolutely novel, ultrasensitive, highly specific and selective drug-biosensors, also paving the way for real-time monitoring applications, in coupling with the restoration properties of DNA-aptamers. The hysteretic properties exhibited by the hereby-presented special nanodevices, modified via surface treatments, are leveraged along the complete cycle consisting of DNA-aptamer immobilization, target binding, and DNA-aptamer regeneration for successful and effective detection of Tenofovir, an antiviral drug for HIV treatment, in buffer as well as in non-diluted human serum. This results in ultrasensitive, label-free monitoring of the therapeutic compound with a limit of detection of 3.09 pM in buffer and 1.38 nM in full serum. These LODs demonstrate 10 times higher sensitivity for the in-buffer drug detection, and twice better performance for drug sensing in full human serum, ever obtained. The selectivity of the memristive biosensor for Tenofovir detection was verified through both positive and negative controls in full human serum. In addition, the DNA-aptamer regeneration character is portrayed for the first time through a memristive effect, and scanning electron microscopy throws more light on the binding mechanism efficiency through the variation of the nanodevice surface properties at the nanoscale.The results presented in this work demonstrate that the coupling of the memristive effect and aptamer regeneration provides the best ever realized nano-biosensor for drug detection also in full human serum.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app