Add like
Add dislike
Add to saved papers

Stratification of chlorinated ethenes natural attenuation in an alluvial aquifer assessed by hydrochemical and biomolecular tools.

Chemosphere 2017 October
Biomolecular and hydrochemical tools were used to evaluate natural attenuation of chlorinated ethenes in a Quaternary alluvial aquifer located close to a historical source of large-scale tetrachloroethylene (PCE) contamination. Distinct stratification of redox zones was observed, despite the aquifer's small thickness (2.8 m). The uppermost zone of the target aquifer was characterised by oxygen- and nitrate-reducing conditions, with mixed iron- to sulphate-reducing conditions dominant in the lower zone, along with indications of methanogenesis. Natural attenuation of PCE was strongly influenced by redox heterogeneity, while higher levels of PCE degradation coincided with iron- to sulphate reducing conditions. Next generation sequencing of the middle and/or lower zones identified anaerobic bacteria (Firmicutes, Chloroflexi, Actinobacteria and Bacteroidetes) associated with reductive dechlorination. The relative abundance of dechlorinators (Dehalococcoides mccartyi, Dehalobacter sp.) identified by real-time PCR in soil from the lower levels supports the hypothesis that there is a significant potential for reductive dechlorination of PCE. Local conditions were insufficiently reducing for rapid complete dechlorination of PCE to harmless ethene. For reliable assessment of natural attenuation, or when designing monitoring or remedial systems, vertical stratification of key biological and hydrochemical markers should be analysed as standard, even in shallow aquifers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app