Add like
Add dislike
Add to saved papers

Nanoscale characterization of forensically relevant epithelial cells and surface associated extracellular DNA.

Atomic force microscopy provides a novel morphological and physico-chemical perspective to analyze epithelial cell samples in forensic investigations. As a nanoscale, single cell tool, it allows the investigation of scarce samples in a non-destructive fashion. Using chemical force spectroscopy, it permits the identification of specific functional groups or surface molecules. Of specific interest is the presence of extracellular DNA (eDNA) on the surface of epithelial cells that line the exterior skin and interior cavities of human bodies, and can transfer onto surfaces through contact with skin and saliva. To date, this eDNA has only been measured a bulk level. Here, using nanoscale imaging, we first describe the unique differences between keratinized epithelial cells and non-keratinized buccal cells. Then via a force mapping technique, we show how eDNA can be spatially located and quantified on the cell surface. Our results suggest that presence and relative quantity of surface-associated, extracellular DNA signatures can be analyzed on individual epithelial cells from different tissue sources, providing a new tool in the forensic analysis of touch samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app