Add like
Add dislike
Add to saved papers

Design and Synthesis of Novel Anti-metastatic Hypoxic Cytotoxin TX-2137 Targeting AKT Kinase.

BACKGROUND: The hypoxic microenvironment plays a crucial role in the malignant progression of tumor cells. Moreover, AKT, a serine/threonine kinase, is activated by various extracellular growth factors and is important for cell growth, survival, and motility of leukocytes, fibroblasts, endothelial cells, and tumor cells. Therefore, we aimed to design an anti-metastatic hypoxic cytotoxin which has inhibitory effects on AKT.

RESULTS: TX-2137 was designed and synthesized based on the structural similarity of a preexisting AKT1/2 kinase inhibitor and a hypoxic cytotoxin tirapazamine. TX-2137 effectively reduced the expression of phosphorylated AKT and matrix metalloproteinase 9 (MMP9) and showed strong inhibition of the proliferation of B16-F10, HT-1080, and MKN-45 cells. In addition, TX-2137 exhibited hypoxia-selective cytotoxicity towards A549 cells and inhibited liver metastasis of B16-F10 cells in a xenograft chick embryo model in the same way as doxorubicin.

CONCLUSION: TX-2137 may be a potent lead compound in the development of a novel anti-metastatic AKT kinase inhibitor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app