Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Cyclic tetrapeptide HDAC inhibitors as potential therapeutics for spinal muscular atrophy: Screening with iPSC-derived neuronal cells.

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder that is caused by inactivating mutations in the Survival of motor neuron 1 (SMN1) gene, resulting in decreased SMN protein expression. Humans possess a paralog gene, SMN2, which contains a splicing defect in exon 7 leading to diminished expression of full-length, fully functional SMN protein. Increasing SMN2 expression has been a focus of therapeutic development for SMA. Multiple studies have reported the efficacy of histone deacetylase inhibitors (HDACi) in this regard. However, clinical trials involving HDACi have been unsatisfactory, possibly because previous efforts to identify HDACi to treat SMA have employed non-neuronal cells as the screening platform. To address this issue, we generated an SMA-patient specific, induced pluripotent stem cell (iPSC) derived neuronal cell line that contains homogenous Tuj1+neurons. We screened a small library of cyclic tetrapeptide HDACi using this SMA neuronal platform and discovered compounds that elevate SMN2 expression by an impressive twofold or higher. These candidates are also capable of forming gems intranuclearly in SMA neurons, demonstrating biological activity. Our study identifies new potential HDACi therapeutics for SMA screened using a disease-relevant SMA neuronal cellular model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app