Add like
Add dislike
Add to saved papers

Thermal aggregation of human immunoglobulin G in arginine solutions: Contrasting effects of stabilizers and destabilizers.

Arginine is widely used as aggregation suppressor of proteins in biotechnology and pharmaceutics. However, why the effect of arginine depends on the types of proteins and stresses, including monoclonal antibodies, is still unclear. Here we investigated the precise processes of the thermal aggregation of human immunoglobulin G (IgG) in the presence of additives. As expected, arginine was the best additive to suppress the formation of insoluble aggregates during heat treatment, though it was unable to preserve the monomer content. A systematic analysis of the additives showed that sugars and kosmotropic ion inhibit the formation of soluble oligomers. These behaviors indicate that the thermal aggregation of IgG occurs by (i) the formation of soluble oligomers, which is triggered by the unfolding process that can be stabilized by typical osmolytes, and (ii) the formation of insoluble aggregates through weak cluster-cluster interactions, which can be suppressed by arginine. Understanding the detailed mechanism of arginine will provide useful information for the rational formulation design of antibodies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app