Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

CADPS2 gene expression is oppositely regulated by LRRK2 and alpha-synuclein.

The Ca2+ -dependent activator protein for secretion 2 (CADPS2) is a member of the CAPS/CADPS protein family that plays crucial roles in synaptic vesicle dynamics. Genomic variability in the CADPS2 gene has been associated to autism spectrum disorders and Alzheimer's disease, both characterized by altered neurotransmission. Biological evidence also linked CADPS2 to Parkinson's disease (PD), as a disease-causing mutation in leucine-rich repeat kinase 2 (LRRK2) was reported to increase CADPS2 gene and protein expression. Furthermore, restoration of CADPS2 physiologic levels was able to provide neuroprotection in patient-derived neurons, consistent with the synaptic dysfunction postulated to underlie PD. However, little is known about the influence of PD-related proteins on transcriptional regulation of critical synaptic genes such as CADPS2. Here we aimed at investigating the transcriptional effects of LRRK2 and alpha-synuclein (aSyn) on CADPS2 gene expression, using a combination of in silico analyses and cell biology techniques. First, we identified a predicted promoter in the human CADPS2 genomic sequence, which we then utilized in a luciferase-based gene reporter assay. This approach enabled us to disclose a differential effect of high levels of LRRK2 and aSyn on CADPS2 promoter activity. Specifically, CADPS2 transcriptional activity was enhanced by high cellular levels of LRRK2 and reduced by overexpression of aSyn. Consistently, CADPS2 mRNA levels were diminished in aSyn overexpressing cells. Our results indicate that LRRK2 and aSyn participate in the dysregulation of CADPS2 by altering transcription and support the hypothesis that synaptic dysfunctions, through different mechanisms, might contribute to the neuronal defects of diseases such as PD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app