Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Interferon-β regulates dendritic cell activation and migration in experimental autoimmune encephalomyelitis.

Immunology 2017 November
CD11c+ dendritic cells (DCs) exert a critical role as antigen-presenting cells in regulating pathogenic T cells in multiple sclerosis (MS). To determine whether the therapeutic benefit of interferon-β (IFN-β) treatment for MS is in part influenced by IFN regulation of DC function, we examined the immunophenotype of DCs derived from IFN-β+/+ and IFN-β-/- mice using a myelin oligodendrocyte glycoprotein (MOG) peptide-induced mouse model of MS, experimental autoimmune encephalomyelitis (EAE). Our earlier work identified that IFN-β-/- mice exhibit earlier onset and more rapid progression of neurological impairment compared with IFN-β+/+ mice. In this study we show that lipopolysaccharide-/MOG peptide-stimulated IFN-β-/- DCs secrete cytokines associated with pathological T helper type 17 rather than regulatory T-cell polarization and exhibit increased CD80 and MHCII expression when compared with stimulated IFN-β+/+ DCs. IFN-β-/- DCs from mice immunized to develop EAE induce greater proliferation of MOG-transgenic CD4+ T cells and promote interleukin-17 production by these T cells. Adoptive transfer of MOG peptide-primed IFN-β-/- DCs into IFN-β+/+ and IFN-β-/- mice immunized to develop EAE resulted in their rapid migration into the central nervous system of recipient mice, before onset of disease, which we attribute to failed signal transducer and activator of transcription 1-mediated inhibition of CCR7. Taken together, our data support immunoregulatory roles for IFN-β in the activation and migration of DCs during EAE.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app