Add like
Add dislike
Add to saved papers

Effects of energetic ion irradiation on WSe2/SiC heterostructures.

Scientific Reports 2017 June 24
The remarkable electronic properties of layered semiconducting transition metal dichalcogenides (TMDs) make them promising candidates for next-generation ultrathin, low-power, high-speed electronics. It has been suggested that electronics based upon ultra-thin TMDs may be appropriate for use in high radiation environments such as space. Here, we present the effects of irradiation by protons, iron, and silver ions at MeV-level energies on a WSe2/6H-SiC vertical heterostructure studied using XPS and UV-Vis-NIR spectroscopy. It was found that with 2 MeV protons, a fluence of 10(16) protons/cm(2) was necessary to induce a significant charge transfer from SiC to WSe2, where a reduction of valence band offset was observed. Simultaneously, a new absorption edge appeared at 1.1 eV below the conduction band of SiC. The irradiation with heavy ions at 10(16) ions/cm(2) converts WSe2 into a mixture of WOx and Se-deficient WSe2. The valence band is also heavily altered due to oxidation and amorphization. However, these doses are in excess of the doses needed to damage TMD-based electronics due to defects generated in common dielectric and substrate materials. As such, the radiation stability of WSe2-based electronics is not expected to be limited by the radiation hardness of WSe2, but rather by the dielectric and substrate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app