Add like
Add dislike
Add to saved papers

Quantitative Proteomics Analysis Reveals Novel Targets of miR-21 in Zebrafish Embryos.

Scientific Reports 2017 June 23
MicroRNAs (miRNAs) are noncoding RNAs which control gene expression by the suppression of translation or the degradation of mRNAs. Dre-miR-21 (miR-21) has been reported to impact cardiac valvulogenesis in zebrafish embryos. However, the target genes of miR-21 are still largely unknown. Here a tandem isobaric mass tag (TMT)-based quantitative proteomic strategy was employed to identify the global profile of miR-21-regulated proteins. A total of 251 proteins were dysregulated after miR-21 knockdown, suggesting that they may be regulated by miR-21. Bioinformatics analysis indicated that these differentially expressed proteins (DEPs) participate in various biological processes, suggesting that miR-21 may be involved in diverse cellular pathways. Sixteen DEPs were also predicted to be miR-21 targets by at least two algorithms, and several candidate target genes were selected for further luciferase reporter analysis. The results showed that genes encoding tropomyosin 1 (tpm1) and poly(rC) binding protein 2 (pcbp2) are direct miR-21 targets. Taken together, our results not only reveal a large number of novel miR-21 regulated proteins that possess pleiotropic functions, but also provide novel insights into the molecular mechanisms of miR-21 regulation of zebrafish cardiac valvulogenesis and embryonic development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app