Add like
Add dislike
Add to saved papers

Thermally and Electrically Triggered Triple-Shape Memory Behavior of Poly(vinyl acetate)/Poly(lactic acid) Due to Graphene-Induced Phase Separation.

This work aimed to develop a facile and broadly applicable method for fabricating multistimuli responsive triple-shape memory polymers (SMPs). Hence, herein the SMPs were prepared through the simple physical blending of two commercially available biopolymers, poly(lactic acid) (PLA) and poly(vinyl acetate) (PVAc), in the presence of robust and conductive graphene nanoplatelets. Interestingly, atomic force microscopy observations and thermal analyses revealed that the presence of nanofillers led to phase separation and appearance of two well-separated transition temperatures in the blend of these two miscible polymers. Consequently, shape memory results showed that the unfilled blend of PLA/PVAc with a single thermal transition can only show moderate heat triggered dual-shape memory behavior. While, PLA/PVAc/graphene nanocomposite blends demonstrated excellent thermally and electrically actuated triple-shape memory effects besides their remarkable dual-shape memory behavior. In addition, electrical conductivity of the blend was enhanced by ∼14 orders of magnitude in the presence of graphene. More interestingly, electroactive shape recovery experiments exhibited that depending on the applied voltage, temporary shapes in each region of sample can be either individually or simultaneously recovered.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app