Add like
Add dislike
Add to saved papers

Key driving forces of desertification in the Mu Us Desert, China.

Scientific Reports 2017 June 22
The temporal trends and key driving forces of desertification in the Mu Us Desert are representatives of most arid regions of Asia with a high risk of desertification. We analyzed the significance of Aeolian transport on desertification in the Mu Us Desert by field investigations, sampling, wind tunnel experiments, particle size and nutrient measurements, and statistics on aeolian transport potentials. The results showed that high intensities of aeolian processes may result in low differences in aeolian transport despite differences in the underlying sediments. When high desertification occurred in the 1970s, the annual losses of the ammonium N, nitrate N, available K, and available P were approximately 116, 312, 46,436, and 1,251 kg km(-2), respectively. After 2010, the losses were only 8, 20, 3,208, and 84 kg km(-2), which were generally only 6.7% of those in the 1970s. The results showed that although human activity may trigger desertification, the dramatic decline of aeolian transport and low nutrient loss may be the key driving forces for the occurrence of rehabilitation in this region.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app