Add like
Add dislike
Add to saved papers

Decreased myoblast differentiation in chronic binge alcohol-administered simian immunodeficiency virus-infected male macaques: role of decreased miR-206.

Skeletal muscle stem cells play a critical role in regeneration of myofibers. We previously demonstrated that chronic binge alcohol (CBA) markedly attenuates myoblast differentiation potential and myogenic gene expression. Muscle-specific microRNAs (miRs) are implicated in regulation of myogenic genes. The aim of this study was to determine whether myoblasts isolated from asymptomatic CBA-administered simian immunodeficiency virus (SIV)-infected macaques treated with antiretroviral therapy (ART) showed similar impairments and, if so, to elucidate potential underlying mechanisms. Myoblasts were isolated from muscle at 11 mo after SIV infection from CBA/SIV macaques and from time-matched sucrose (SUC)-treated SIV-infected (SUC/SIV) animals and age-matched controls. Myoblast differentiation and myogenic gene expression were significantly decreased in myoblasts from SUC/SIV and CBA/SIV animals compared with controls. SIV and CBA decreased muscle-specific miR-206 in plasma and muscle and SIV decreased miR-206 expression in myoblasts, with no statistically significant changes in other muscle-specific miRs. These findings were associated with a significant increase in histone deacetylase 4 (HDAC4) and decrease in myogenic enhancer factor 2C (MEF2C) expression in CBA/SIV muscle. Transfection with miR-206 inhibitor decreased myotube differentiation, increased expression of HDAC4, and decreased MEF2C, suggesting a critical role of miR-206 in myogenesis. Moreover, HDAC4 was confirmed to be a direct miR-206 target. These results support a mechanistic role for decreased miR-206 in suppression of myoblast differentiation resulting from chronic alcohol and SIV infection. The parallel changes in skeletal muscle and circulating levels of miR-206 warrant studies to establish the possible use of plasma miR-206 as an indicator of impaired muscle function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app