Add like
Add dislike
Add to saved papers

The Fate of Pollutants in Porous Asphalt Pavements, Laboratory Experiments to Investigate Their Potential to Impact Environmental Health.

Pervious Paving Systems (PPS) are part of a sustainable approach to drainage in which excess surface water is encouraged to infiltrate through their structure, during which potentially toxic elements, such as metals and hydrocarbons are treated by biodegradation and physical entrapment and storage. However, it is not known where in the PPS structure these contaminants accumulate, which has implications for environmental health, particularly during maintenance, as well as consequences for the recycling of material from the PPS at the end-of-life. A 1 m³ porous asphalt (PA) PPS test rig was monitored for 38 months after monthly additions of road sediment (RS) (367.5 g in total) and unused oil (430 mL in total), characteristic of urban loadings, were applied. Using a rainfall simulator, a typical UK rainfall rate of 15 mm/h was used to investigate its efficiency in dealing with contamination. Water quality of the effluent discharged from the rig was found to be suitable for discharge to most environments. On completion of the monitoring, a core was taken down through its surface, and samples of sediment and aggregate were taken. Analysis showed that most of the sediment remained in the surface course, with metal levels lower than the original RS, but higher than clean, unused aggregate or PA. However, even extrapolating these concentrations to 20 years' worth of in-service use (the projected life of PPS) did not suggest their accumulation would present an environmental pollution risk when carrying out maintenance of the pavement and also indicates that the material could be recycled at end-of-life.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app