Add like
Add dislike
Add to saved papers

Intracellular Delivery Platform for "Recalcitrant" Cells: When Polymeric Carrier Marries Photoporation.

The intracellular delivery of exogenous macromolecules is of great interest for both fundamental biological research and clinical applications. Although traditional delivery systems based on either carrier mediation or membrane disruption have some advantages; however, they are generally limited with respect to delivery efficiency and cytotoxicity. Herein, a collaborative intracellular delivery platform with excellent comprehensive performance is developed using polyethylenimine of low molecular weight (LPEI) as a gene carrier in conjunction with a gold nanoparticle layer (GNPL) acting as a photoporation agent. In this system, the LPEI protects the plasmid DNA (pDNA) to avoid possible nuclease degradation, and the GNPL improves the delivery efficiency of the LPEI/pDNA complex to the cells. The collaboration of LPEI and GNPL is shown to give significantly higher transfection efficiencies for hard-to-transfect cells (88.5 ± 9.2% for mouse embryonic fibroblasts, 94.0 ± 6.3% for human umbilical vein endothelial cells) compared to existing techniques without compromising cell viability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app