Add like
Add dislike
Add to saved papers

Preparations of hyperbranched polymer nano micelles and the pH/redox controlled drug release behaviors.

Hyperbranched polymer nano micelles (NMs) were prepared through a nucleophilic ring opening polymerization between cystamine and polyethylene glycol diglycidyl ether, followed by a reaction of amino groups and dimethyl maleic anhydride. The NMs showed spheric morphologies with hydrodynamic diameters of 106-120nm. Doxorubicin was loaded in the NMs with loading rate as high as 15.38wt%; The NMs possessed negative zeta potentials in aqueous solutions of pH7.4 due to the carboxyl ions on the particle surfaces, but the zeta potentials were converted to positive ones due to the hydrolysis of amide bonds at pH5.0-6.5, leading to the leaving of carboxyl groups and remaining of amino groups. The disulfide bonds in cystamine were designed in the hyperbranched polymer structures of the NMs, and bonds could be broken by a reducing agent l-glutathione (GSH) (10mM), resulting in a targeted drug release. The smart NMs displayed good biodegradability and biocompatibility, and they could be potentially used in drug controlled release field.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app