Add like
Add dislike
Add to saved papers

Indoline derivatives mitigate liver damage in a mouse model of acute liver injury.

BACKGROUND: Exposure of mice to D-galactosamine (GalN) and lipopolysaccharide (LPS) induces acute liver failure through elevation of TNF-α, which causes liver damage resembling that in humans. The current study evaluated in this model the effect of two indoline derivatives, which have anti-inflammatory activity in macrophages.

METHODS: AN1297 and AN1284 (0.025-0.75mg/kg) or dexamethasone (3mg/kg), were injected subcutaneously, 15min before intraperitoneal injection of GalN (800mg) plus LPS (50μg) in male Balb/C mice. After 6h, their livers were evaluated histologically by staining with hematoxylin and eosin for tissue damage and by cleaved caspase 3 for apoptosis. Activity of liver enzymes, alanine transaminase (ALT) and aspartate aminotransferase (AST) and levels of TNF-α and IL-6 were measured in plasma, and those of TNF-α and IL-6, in the liver.

RESULTS: AN1297 (0.075-0.75mg/kg) and AN1284 (0.25-0.75mg/kg) maximally reduced ALT by 51% and 80%, respectively. Only AN1284 (0.25 and 0.75mg/kg) reduced AST by 41% and 48%. AN1297 and AN1284 (0.25mg/kg) decreased activation of caspase 3 (a sign of apoptosis) by 80% and plasma TNF-α by 75%. AN1297 and AN1284 (0.075mg/kg) prevented the rise in TNF-α and IL-6 in the liver. AN1284 (0.25mg/kg) reduced mortality from 90% to 20% (p<0.01) and AN1297, to 60% (p=0.121). Both indoline derivatives inhibited the phosphorylation of MAPK p38 and DNA binding of the transcription factor, AP-1.

CONCLUSION: While both compounds are highly potent anti-inflammatory agents, AN1284 is more effective in mitigating the underlying causes of GalN/LPS-induced acute liver failure in mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app