Add like
Add dislike
Add to saved papers

Tunable photoluminescence and room temperature ferromagnetism of In 2 S 3 :Dy 3+ ,Tb 3+ nanoparticles.

Trivalent lanthanide-doped luminescent nanomaterials have unique spectral and magnetic properties, which have been extensively investigated due to their potential application prospects in a number of new technologies. The rare earth Dy3+ and Tb3+ ions co-doped β-In2 S3 dilute nanoparticles with different doping concentrations were successfully synthesized by a gas-liquid phase chemical deposition method. The band gap energy could be tuned by varying the doping concentration from 3.17 to 3.51 eV. The In2 S3 :Dy3+ ,Tb3+ nanoparticles exhibited strong photoluminescence emission peaks and room temperature ferromagnetism. Under excitation at 352 nm, the intrinsic emission and transitions of5 D4 →7 F6 for Tb3+ and4 F9/2 →6 H13/2 for Dy3+ were observed. The saturation magnetizations presented an increasing trend and then decreased as the doping concentration increased. This can be ascribed to the fact that the enhanced antiferromagnetic interaction suppresses the ferromagnetic behavior after the doping concentration reaches a certain value. In addition, VASP first-principles calculations were used to further shed light on the magnetic origin and chemical bonding mechanism of the as-prepared samples. It was found that the magnetism could be attributed to In vacancies and the co-doped system is in favor of the formation of In vacancies. This study provides experimental and theoretical guidance for the design and synthesis of promising candidates for optical, magnetic, and spintronic applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app