Add like
Add dislike
Add to saved papers

Marinesco bodies and substantia nigra neuron density in Parkinson's disease.

AIM: Marinesco bodies (MB) are intranuclear inclusions in pigmented neurons of the substantia nigra (SN). While rare in children, frequency increases with normal ageing and is high in Alzheimer's disease, dementia with Lewy bodies and other neurodegenerative disorders. Coinciding with the age-related rise in MB frequency is initiation of cell death among SN neurons. Whether MB have a role in this process is unknown. Our aim is to examine the association of MB with SN neuron density in Parkinson's disease (PD) in the Honolulu-Asia Aging Study.

METHODS: Data on MB and neuron density were measured in SN transverse sections in 131 autopsied men aged 73-99 years at the time of death from 1992 to 2007.

RESULTS: Marinesco body frequency was low in the presence vs. absence of PD (2.3% vs. 6.6%, P < 0.001). After PD onset, MB frequency declined as duration of PD increased (P = 0.006). Similar patterns were observed for SN neuron density. When MB frequency was low, neuron density was noticeably reduced in the SN ventrolateral quadrant, the region most vulnerable to PD neurodegeneration. Low MB frequency was unique to PD as its high frequency in non-PD cases was unrelated to parkinsonian signs and incidental Lewy bodies. Frequency was high in the presence of Alzheimer's disease and apolipoprotein ε4 alleles.

CONCLUSIONS: While findings confirm that MB frequency is low in PD, declines in MB frequency continue with PD duration. The extent to which MB have a distinct relationship with PD warrants clarification. Further studies of MB could be important in understanding PD processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app