Add like
Add dislike
Add to saved papers

Designing an antibacterial acrylic resin using the cosolvent method -Effect of ethanol on the optical and mechanical properties of a cold-cure acrylic resin.

Dental Materials Journal 2017 September 27
Antimicrobial cetylpyridinium chloride (CPC) has low miscibility with acrylic resin monomer but can be homogeneously mixed using ethanol as a cosolvent. This study investigated the effects of ethanol addition on the properties of a cold-cure acrylic resin. Ethanol was an excellent cosolvent for CPC and methyl methacrylate monomer (MMA), but the cured resin exhibited a strong change in coloration to yellow (ΔE*ab >8) and a drastically reduced bending strength (from 97 to 25 MPa) and elastic modulus (from 2.7 to 0.6 GPa) when equal volumes of ethanol and monomer were used together, possibly due to the solvation and deactivation of radicals by ethanol. However, these unfavorable effects diminished when the ethanol/MMA ratio was reduced to 0.25, and became smaller when each specimen was depressurized and excess ethanol was removed. Thus, it may be possible to develop a molecularly uniform antibacterial acrylic resin with acceptable color and strength using this simple technique.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app