Add like
Add dislike
Add to saved papers

In Vitro and in Vivo Analysis of Mineralized Collagen-Based Sponges Prepared by a Plasma- and Precursor-Assisted Biomimetic Process.

Three-dimensional (3D) porous scaffolds for supporting cell adhesion and growth play a vital role in tissue engineering applications. In the present study, three different collagen-based 3D sponges were functionalized by apatite coating. The sponges were coated with apatite on their outer and inner surfaces while retaining their interconnecting pores. To achieve this, we employed a vacuum degassing system in our plasma- and precursor-assisted biomimetic process using a supersaturated calcium phosphate solution. The resulting apatite-coated sponges (mineralized sponges) showed better cell adhesion properties in vitro for osteoblast-like MC3T3-E1 cells compared to that of uncoated sponges. The three mineralized sponges were implanted in the subcutaneous tissue of rats. Upon histological evaluation after 10 days, the mineralized sponges showed cell in-growth rates that were approximately 4-fold greater than those of the untreated sponges without any notable inflammatory reactions. As these sponges are composed of clinically approved collagen-based frameworks and possess a 3D porous structure with a mineralized surface appropriate for cell adhesion and internalization, further in vitro and in vivo studies should be conducted regarding tissue engineering applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app