Add like
Add dislike
Add to saved papers

Effects of Hypercapnia on Myocardial Blood Flow in Healthy Human Subjects.

Elevation of the end-tidal partial pressure of CO2 (PET co2 ) increases cerebral and myocardial blood flow (MBF), suggesting that it may be a suitable alternative to pharmacologic stress or exercise for myocardial perfusion imaging. The purpose of this study was to document the pharmacodynamics of CO2 for MBF using prospective end-tidal targeting to precisely control arterial Pco2 and PET to measure the outcome variable, MBF. Methods: Ten healthy men underwent serial 82 Rb PET/CT imaging. Imaging was performed at rest and during 6-min hypercapnic plateaus (baseline; PET co2 at 50, 55, and 60 mm Hg; repeat of PET co2 at 60 mm Hg; and repeat of baseline). MBF was measured using 82 Rb injected 3 min after the beginning of hypercapnia and a 1-tissue-compartment model with flow-dependent extraction correction. Results were compared with those obtained during an adenosine stress test (140 μg/kg/min). Results: Baseline PET co2 was 38.9 ± 0.8 (mean ± SD) mm Hg (range, 35-43 mm Hg). All PET co2 targets were sustained, with SDs of less than 1.5 mm Hg. Heart rate, systolic blood pressure, rate × pressure product, and respiratory frequency increased with progressive hypercapnia. MBF increased significantly at each level of hypercapnia to 1.92-fold over baseline (0.86 ± 0.24 vs. 0.45 ± 0.08 mL/min/g; P = 0.002) at a PET co2 of 60 mm Hg. MBF after the administration of adenosine was significantly greater than that with the maximal hypercapnic stimulus (2.00 vs. 0.86 mL/min/g; P < 0.0001). Conclusion: To our knowledge, this study is the first to assess the response of MBF to different levels of hypercapnia in healthy humans with PET. MBF increased with increasing levels of hypercapnia; MBF at a PET co2 of 60 mm Hg was double that at baseline.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app