Add like
Add dislike
Add to saved papers

The influence of the counterfort while ballistic testing using gelatine blocks.

In wound ballistic research, gelatine blocks of various dimensions are used depending on the simulated anatomical region. When relatively small blocks are used as substitute for a head, problems with regard to the expansion of the gelatine block could arise. The study was conducted to analyse the influence of the material the gelatine block is placed upon. Thirty-six shots were performed on 12 cm gelatine cubes doped with thin foil bags containing acrylic paint. Eighteen blocks each were placed on a rigid table or on a synthetic sponge of 5 cm height. Deforming bullets with different kinetic energies were fired from distance and recorded by a high-speed video camera. Subsequently, the gelatine cubes were cut into 1 cm thick slices which were scanned using a flatbed scanner. Cracks in the gelatine were analysed by measuring the longest crack, Fackler's wound profile and the polygon (perimeter and area) outlining the ends of the cracks. The energy dissipated ranged from 153 to 707 J. For moderate energy transfer, no significant influence of the sustaining material was discerned. With increasing dissipated energy, the sponge was compressed correspondingly, and the cracks were longer than in gelatine blocks which had been placed on a table. High-speed video revealed a loss of symmetry and a flattened inferior margin of the temporary cavity with energies superior to approx. Two hundred Joules when the blocks were placed on a rigid platform. However, 12 cm gelatine cubes showed material limits by a non-linear response when more than 400 J were dissipated for both rigid and elastic sustainment. In conclusion, the smaller the gelatine blocks and the greater the energy transfers, the more important it is to take into account the counterfort of the sustaining material.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app