Add like
Add dislike
Add to saved papers

Universal fractality of morphological transitions in stochastic growth processes.

Scientific Reports 2017 June 15
Stochastic growth processes give rise to diverse and intricate structures everywhere in nature, often referred to as fractals. In general, these complex structures reflect the non-trivial competition among the interactions that generate them. In particular, the paradigmatic Laplacian-growth model exhibits a characteristic fractal to non-fractal morphological transition as the non-linear effects of its growth dynamics increase. So far, a complete scaling theory for this type of transitions, as well as a general analytical description for their fractal dimensions have been lacking. In this work, we show that despite the enormous variety of shapes, these morphological transitions have clear universal scaling characteristics. Using a statistical approach to fundamental particle-cluster aggregation, we introduce two non-trivial fractal to non-fractal transitions that capture all the main features of fractal growth. By analyzing the respective clusters, in addition to constructing a dynamical model for their fractal dimension, we show that they are well described by a general dimensionality function regardless of their space symmetry-breaking mechanism, including the Laplacian case itself. Moreover, under the appropriate variable transformation this description is universal, i.e., independent of the transition dynamics, the initial cluster configuration, and the embedding Euclidean space.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app