Add like
Add dislike
Add to saved papers

One-pot Synthesis of CdS Irregular Nanospheres Hybridized with Oxygen-Incorporated Defect-Rich MoS 2 Ultrathin Nanosheets for Efficient Photocatalytic Hydrogen Evolution.

Robust and highly active photocatalysts, CdS@MoS2 , for hydrogen evolution were successfully fabricated by one-step growth of oxygen-incorporated defect-rich MoS2 ultrathin nanosheets on the surfaces of CdS with irregular fissures. Under optimized experimental conditions, the CdS@MoS2 displayed a quantum yield of ∼24.2% at 420 nm and the maximum H2 generation rate of ∼17203.7 umol/g/h using Na2 S-Na2 SO3 as sacrificial agents (λ ≥ 420 nm), which is ∼47.3 and 14.7 times higher than CdS (∼363.8 μmol/g/h) and 3 wt % Pt/CdS (∼1173.2 μmol/g/h), respectively, and far exceeds all previous hydrogen evolution reaction photocatalysts with MoS2 as co-catalysts using Na2 S-Na2 SO3 as sacrificial agents. Large volumes of hydrogen bubbles were generated within only 2 s as the photocatalysis started, as demonstrated by the photocatalytic video. The high hydrogen evolution activity is attributed to several merits: (1) the intimate heterojunctions formed between the MoS2 and CdS can effectively enhance the charge transfer ability and retard the recombination of electron-hole pairs; and (2) the defects in the MoS2 provide additional active S atoms on the exposed edge sites, and the incorporation of O reduces the energy barrier for H2 evolution and increases the electric conductivity of the MoS2 . Considering its low cost and high efficiency, this highly efficient hybrid photocatalysts would have great potential in energy-generation and environment-restoration fields.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app