Add like
Add dislike
Add to saved papers

Modification of Different Pulps by Homologous Overexpression Alkali-Tolerant Endoglucanase in Bacillus subtilis Y106.

Scientific Reports 2017 June 13
Cellulase (mainly endoglucanase, EG) has been used in pulp modification for improving paper quality through environmentally friendly process. But low activity in alkaline pH and high filter paper activity (FPA) were still obstacles for extending the cellulase application in papermaking industry. In the study, an alkali-tolerant EG gene of Bacillus subtilis Y106 was homologous over-expressed for obtaining suitable enzyme used in pulp modification. The engineering strain could produce the crude enzyme with more alkali-tolerant EG and little PFA. Potential of the crude enzyme in modification of different pulps were investigated. It was found that the enzyme could be used for improving drainage and strength properties of pulps from softwood, hardwood and non-wood materials, especially non-wood pulp such as wheat straw pulp. The underlying mechanisms of pulp modification and different effects on various types of pulps by the EG treatment were also discussed by studying the change in fibers characteristics and fiber bonding.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app