Add like
Add dislike
Add to saved papers

Adiponectin at physiological level glucose-independently enhances inhibitory postsynaptic current onto NPY neurons in the hypothalamic arcuate nucleus.

Neuropeptides 2017 October
Adiponectin regulates glucose and lipid metabolism, acting against atherosclerosis and metabolic syndrome. Accumulating evidences suggest that adiponectin acts on the brain including the arcuate nucleus of hypothalamus (ARC). The ARC contains orexigenic neuropeptide Y (NPY)/agouti related peptide (AgRP) neurons and anorexigenic proopiomelanocortin (POMC) neurons, the first order neurons for feeding regulation. We recently reported that intracerebroventricular injection of adiponectin at low glucose level suppressed food intake, while at elevated glucose level it promoted food intake, exhibiting glucose-dependent reciprocal effects. As an underlying neuronal mechanism, physiological level of adiponectin at low glucose activated ARC POMC neurons and at high glucose inactivated them. Now, whether physiological level of adiponectin also affects NPY/AgRP neurons is essential for fully understanding the adiponectin action, but it remains to be clarified. We here report that a physiological dose of adiponectin, in both high and low glucose conditions, attenuated action potential firing without altering resting membrane potential in ARC NPY neurons. This adiponectin effect was abolished by GABAA receptor blockade. Adiponectin enhanced amplitude but not frequency of inhibitory postsynaptic current (IPSC) onto NPY neurons. These results demonstrate that adiponectin enhances IPSC onto NPY neurons to attenuate action potential firing in NPY neurons in a glucose-independent manner, being contrasted to its glucose-dependent effect on POMC neurons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app