Add like
Add dislike
Add to saved papers

Activatable T 1 Relaxivity Recovery Nanoconjugates for Kinetic and Sensitive Analysis of Matrix Metalloprotease 2.

Sensitive detection of matrix metalloproteinase 2 (MMP-2, an important cancer marker associated with tumor invasion and metastasis) activity in vitro and at cellular level is of great significance to clinical diagnosis and medical treatment. With unique physical properties, nanoparticles are emerging as a platform for the construction of conjugates of various biological molecules, which can be expected to generate new types of biosensors. In this work, Fe3 O4 NPs were modified with Gd chelates via linking peptides to construct NP-substrate (Fe3 O4 -pep-Gd) conjugates for kinetic MMP-2 activity assessment in vitro at the cellular level and in vivo. Superparamagnetic Fe3 O4 quenched the longitudinal relaxation effect (T1 relaxivity) of the attached Gd chelates by perturbing proton relaxation process under an external magnetic field. MMP-2 cleaved the peptide substrates and released Gd chelates from the local magnetic fields accompanied by T1 relaxivity recovery and T1 contrast enhancement. Benefiting from signal amplification through binding multiple Gd chelates to one linking peptide, Fe3 O4 -pep-Gd conjugates exhibited high sensitivity for the detection of MMP-2 (as low as 0.5 nM). Enzymatic processes were in good agreement with the integrated Michaelis-Menten model, revealing an unexpected activity enhancement in the initial stage. Fe3 O4 -pep-Gd conjugates could also probe MMP-2 at cellular level and in vivo that indicates a great promise in in vitro diagnosis (IVD) and disease monitoring.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app