Add like
Add dislike
Add to saved papers

α-Mangostin ameliorates dextran sulfate sodium-induced colitis through inhibition of NF-κB and MAPK pathways.

Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) of the colon as a target site. Previous reports regarding the efficacy of α-mangostin (αMG) to inhibit nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) as well as relatively high distribution to the colon suggested the therapeutic potential of this compound in UC model. In dextran sodium sulfate (DSS)-induced colitis mice (DSS mice), the disease activity index scores involving diarrhea, bloody stool, body weight reduction, and myeloperoxidase (MPO) activities of the esophagus and colon increased with the reduced colon length. Also histologic disturbances and changes of NF-κB and MAPK pathways including phosphorylation of IκB kinase, ERK1/2, SAPK/JNK and p38 were observed in the colon of the DSS mice. However, all of these impaired conditions in the DSS mice were restored by αMG treatment, and the intestinal metabolism of αMG decreased, increasing its distribution to the colons in the DSS mice compared with the control mice. All of these results suggest that high distribution of αMG in the colon might attenuate DSS-induced colitis by inhibiting NF-κB and MAPK pathways in the colon.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app